11 research outputs found

    Possibilities of integration of monitoring requirements by other EU and national legislation

    Get PDF
    Deliverable 1.3 provides inventory of legal regulations, initiatives, developed projects and technologies having potential influence on sensors design processes. Report focus on possible integration of monitoring requirements by other EU and national legislation. Structure of the report consist of: 1. Inventory of EU directives bringing legal regulations providing requirements for having potential influence on sensors design and measurement methodology in reference to parameters demanded, spatial and temporal resolution of data and availability of information for potential users, 2. Inventory of conventions adopted by European Countries, approaching to reach and keep Good Environmental Status, having impact on monitoring processes and fostering development of technical infrastructure, 3. Analysis of national legislation implementing EU directives and representing approach to develop appropriate infrastructure for monitoring duties 4. Inventory of projects developing technologies having potential influence on sensors design, measurement and monitoring methodologies. 5. Inventory of innovative technologies, initiatives and ongoing policy developing processes as source of requirements for perspective technology development These identified items are drivers of new technologies development processes. Sensors, as a part of bigger systems and infrastructures interoperating each other have to conform regulations formulated in legal acts in the context of parameters measured, condition of operation, interaction with environment as object of examination, transmission protocols and data collections terminating data acquisition, processing, storage and information extraction and exchange processes. Objectives The objective of the report is to provide inventory of regulations, directive and conventions having potential influence on sensors design, measurement and monitoring methodologies development having potential influence on sensors design processes. Rationale New developments in the field of technology, measurement and monitoring methodologies, policy and law regulations, possibilities and demands for integration of monitoring requirements by other EU and national legislation, and interoperability challenges are factors determining perspectives of sensors development. Report on regulations, directive and conventions having potential influence on sensors design will include the analysis of possibilities of integration sensor's functionality to meet monitoring requirements and to help to distinguish sensitive or vulnerable areas where monitoring is necessary according to identified ecosystem properties

    Large versus small zooplankton in relation to temperature in the Arctic shelf region

    No full text
    Climate change results in the alteration of the size structure of plankton, which consequently may affect higher trophic levels, such as planktivorous seabirds. In this study Laser Optical Plankton Counter measurements were performed over seven summer seasons (2010–2016) to test the ratio of large versus small zooplankton in relation to environmental conditions. Investigated transects were repeated during the same time of the year (July/August) in different zones of the West Spitsbergen Shelf crossing the Arctic front. The plankton particles were grouped into two size fractions: “Calanus”, potentially consisting of a majority of the high-energetic, older life stages of the preferred prey for little auk (Alle alle) and the “small” fraction including less preferred items. The vertical availability of the Calanus fraction was tested on the background of usually abundant smaller zooplankton, which may hinder the detection of larger zooplankters by little auk. Larger zooplankton were found closer to the coast, in the upper 20-m depth layer in years characterized by significantly lower mean temperatures. Potential availability of prey for the little auk thus could be higher in colder years than in warmer years. Additionally, our study indicated the tendency of the small plankton fraction to concentrate near the locations of the highest chlorophyll fluorescence, in the 20–30-m water layer. The high spatial and temporal resolution of the data indicated a variation in the proportion of large versus small zooplankton, and thus in the availability of Calanus to little auk with respect to temperature

    Large versus small zooplankton in relation to temperature in the Arctic shelf region

    No full text
    Climate change results in the alteration of the size structure of plankton, which consequently may affect higher trophic levels, such as planktivorous seabirds. In this study Laser Optical Plankton Counter measurements were performed over seven summer seasons (2010–2016) to test the ratio of large versus small zooplankton in relation to environmental conditions. Investigated transects were repeated during the same time of the year (July/August) in different zones of the West Spitsbergen Shelf crossing the Arctic front. The plankton particles were grouped into two size fractions: “Calanus”, potentially consisting of a majority of the high-energetic, older life stages of the preferred prey for little auk (Alle alle) and the “small” fraction including less preferred items. The vertical availability of the Calanus fraction was tested on the background of usually abundant smaller zooplankton, which may hinder the detection of larger zooplankters by little auk. Larger zooplankton were found closer to the coast, in the upper 20-m depth layer in years characterized by significantly lower mean temperatures. Potential availability of prey for the little auk thus could be higher in colder years than in warmer years. Additionally, our study indicated the tendency of the small plankton fraction to concentrate near the locations of the highest chlorophyll fluorescence, in the 20–30-m water layer. The high spatial and temporal resolution of the data indicated a variation in the proportion of large versus small zooplankton, and thus in the availability of Calanus to little auk with respect to temperature

    Characterisation of large zooplankton sampled with two different gears during midwinter in Rijpfjorden, Svalbard

    No full text
    During a midwinter cruise north of 80°N to Rijpfjorden, Svalbard, the composition and vertical distribution of the zooplankton community were studied using two different samplers 1) a vertically hauled multiple plankton sampler (MPS; mouth area 0.25 m2, mesh size 200 μm) and 2) a horizontally towed Methot Isaacs Kidd trawl (MIK; mouth area 3.14 m2, mesh size 1500 μm). Our results revealed substantially higher species diversity (49 taxa) than if a single sampler (MPS: 38 taxa, MIK: 28) had been used. The youngest stage present (CIII) of Calanus spp. (including C. finmarchicus and C. glacialis) was sampled exclusively by the MPS, and the frequency of CIV copepodites in MPS was double that than in MIK samples. In contrast, catches of the CV-CVI copepodites of Calanus spp. were substantially higher in the MIK samples (3-fold and 5-fold higher for adult males and females, respectively). The MIK sampling clearly showed that the highest abundances of all three Thysanoessa spp. were in the upper layers, although there was a tendency for the larger-sized euphausiids to occur deeper. Consistent patterns for the vertical distributions of the large zooplankters (e.g. ctenophores, euphausiids) collected by the MPS and MIK samplers provided more complete data on their abundances and sizes than obtained by the single net. Possible mechanisms contributing to the observed patterns of distribution, e.g. high abundances of both Calanus spp. and their predators (ctenophores and chaetognaths) in the upper water layers during midwinter are discussed

    Experimental study of the formation of steep waves and breakers

    No full text
    Breaking waves (whitecaps) are one of the most important and least understood processes associated with the evolution of the surface gravity wave field in the open sea. This process is the principal means by which energy and momentum are transferred away from a developing sea. However, an estimation of the frequency of breaking waves or the fraction of sea surface covered by whitecaps and the amount of dissipated energy induced by breaking is very difficult to carry out under real sea conditions. A controlled experiment, funded by the European Commission under the Improving Human Potential Access Infrastructures programme, was carried out in the Ocean Basin Laboratory at MARINTEK, Trondheim (Norway). Simulation of random waves of the prescribed spectra by wave makers provided a very realistic pattern of the sea surface. The number of breaking waves was estimated by photographing the sea surface and recording the noise caused by the breaking waves. The experimental data will serve for calibration of the theoretical models of the sea surface fraction related to the whitecaps

    Integrated information and prediction Web Service WaterPUCK General concept

    No full text
    In this paper, general concept of a new method as ‘Integrated information and prediction Web Service WaterPUCK’ for investigation influence of agricultural holdings and land-use structures on coastal waters of the southern Baltic Sea is presented. WaterPUCK Service is focused on determination of the current and future environmental status of the surface water and groundwater located in the Puck District (Poland) and its impact on the Bay of Puck (the southern Baltic Sea) environment. It will highly desired tool for land-use and environment management. WaterPUCK combines several different components and methods such as retrospective analyses of existing monitoring data sets, in situ measures and the application of various models to estimate main mechanisms and threats responsible for the pollution transport from the agricultural holdings and land-use structure to the surface and groundwater and potential predictability of environment change of the Puck District and the Bay of Puck ecosystem. WaterPUCK Service will integrate several models, such as a surface water model based on SWAT, a groundwater flow model based on MODFLOW, a 3D-ecohydrodynamic model of the Bay of Puck called EcoPuckBay and an agriculture calculator called CalcGosPuck. The WaterPUCK Service is constructed as part of the project with the same name ‘WaterPUCK’

    Integrated information and prediction Web Service WaterPUCK General concept

    No full text
    In this paper, general concept of a new method as ‘Integrated information and prediction Web Service WaterPUCK’ for investigation influence of agricultural holdings and land-use structures on coastal waters of the southern Baltic Sea is presented. WaterPUCK Service is focused on determination of the current and future environmental status of the surface water and groundwater located in the Puck District (Poland) and its impact on the Bay of Puck (the southern Baltic Sea) environment. It will highly desired tool for land-use and environment management. WaterPUCK combines several different components and methods such as retrospective analyses of existing monitoring data sets, in situ measures and the application of various models to estimate main mechanisms and threats responsible for the pollution transport from the agricultural holdings and land-use structure to the surface and groundwater and potential predictability of environment change of the Puck District and the Bay of Puck ecosystem. WaterPUCK Service will integrate several models, such as a surface water model based on SWAT, a groundwater flow model based on MODFLOW, a 3D-ecohydrodynamic model of the Bay of Puck called EcoPuckBay and an agriculture calculator called CalcGosPuck. The WaterPUCK Service is constructed as part of the project with the same name ‘WaterPUCK’
    corecore